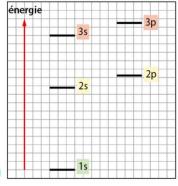
Date:

Partie 1 : constitution et transfo. de la matière


Chapitre 3 : structure de la matière

Activité

DOC 1 Configuration électronique et électrons de valence

La **configuration électronique** décrit la manière dont les électrons d'un atome se répartissent sur des niveaux d'énergie. Ils remplissent progressivement des couches (A), de la moins énergétique à la plus énergétique (B).

Couche électro- nique	Sous- couche	Nombre maximal d'électrons
3	3р	6
	3s	2
2	2p	6
	2s	2
1	1s	2

La configuration électronique du carbone C, qui possède 6 électrons, est 1s² 2s² 2p². Sa couche externe, de niveau 2, comporte quatre **électrons de valence**.

- Ordre des sous- couches : 1s 2s 2p 3s 3p 4s 3d 4p ...
- On appelle électrons de valence les électrons situés dans la dernière couche électronique de l'atome (la plus éloignée du noyau)
- On appelle **Doublet** un ensemble de deux électrons.

DOC 3 Schéma de Lewis

Le schéma de Lewis est une représentation schématique plane. Il rend compte de la **répartition des électrons de valence** dans les molécules ou les ions.

Sur ce schéma figurent :

- les doublets d'électrons non liants ___;
- les doublets d'électrons liants ;
- les **lacunes électroniques** (doublets d'électrons manquants) ;
- la **charge** des ions.

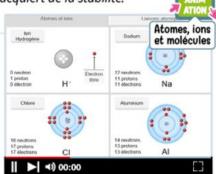
ion chlorure

ion oxonium

trichlorure d'aluminium

- 1 a. Déterminer le nombre d'électrons de valence des atomes H, O, Al, et Cl (tableau périodique en rabat de couverture).
- b. Donner les possibilités pour les atomes O et Cl de gagner en stabilité au niveau électronique.
- Déterminer le schéma de Lewis :
- a. de la molécule HCl; b. de l'ion monoatomique H+;
- c. de l'ion polyatomique HO-.

DOC 2 Stabilité et gaz noble


La couche externe des gaz nobles contient 2 ou 8 électrons, ce qui leur apporte de la stabilité :

- l'hélium He possède 2 électrons;
 sa configuration électronique est 1s²;
 sa couche 1 contient 2 électrons;
- le néon Ne possède 10 électrons;
 sa configuration électronique est
 1s² 2s² 2p⁶; sa couche 2 contient
 8 électrons;
- l'argon Ar possède 18 électrons;
 sa configuration électronique est
 1s² 2s² 2p6 3s² 3p6;
 sa couche 3
 contient 8 électrons.

Pour des raisons de stabilité, un atome tend à acquérir la structure électronique du gaz noble qui est le plus proche de lui dans le tableau périodique.

Pour acquérir cette structure, l'atome peut soit se transformer en **ion**, soit établir des liaisons de valence au sein d'une **molécule**.

L'animation ci-dessous explique la manière dont un atome acquiert de la stabilité.

- DOC 4 Comment trouver le schéma de Lewis d'une molécule ?
- Déterminer le nombre d'électrons de valence de chaque atome.
- Dessiner le schéma de Lewis de chaque atome.
- Choisir comme atome central celui qui a le plus d'électrons célibataires.
- assembler les schémas de Lewis des atomes en créant des liaisons entre les électrons célibataires.

1ere Spé	Physique Chimie	Date :
Partie 1 : constitution et	Chapitre 3 : structure de la matière	Activité
transfo. de la matière	and provide a contraction of the state of th	7.00.7.00

Dessiner les schémas de Lewis des espèces chimiques suivantes :

Espèce chimique	Schéma de Lewis	Espèce chimique	Schéma de Lewis
NH_3		H ₂ O	
CH ₄		CO ₂	
C_3H_8		C_2H_4	
C_2H_2		C ₂ H ₆ O	
$C_2H_4O_2$		C_2H_7N	
02		H_2	
N_2		Cl ⁻	
CO ₂		Н+	
HCl		H ₃ O ⁺	
02-		Na ⁺	
NH_4^+		ОН-	